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Abstract
The family of autonomous reaction–diffusion models on a one-dimensional
lattice with boundaries is studied. By autonomous, it is meant that the evolution
equation for n-point functions contains only n- or less than n-point functions.
It is shown that these models exhibit a static and a dynamic phase transition.

PACS numbers: 82.20.Mj, 02.50.Ga, 05.40.+j

1. Introduction

Two main subjects of statistical mechanics are the study of equilibrium and non-equilibrium
statistical systems. Much is known about equilibrium statistical mechanics, but the study
of the non-equilibrium systems is not so well established. There are, however, many
interesting problems related to the non-equilibrium behaviour of statistical systems, including
the relaxation towards the stationary state. Some interesting problems in non-equilibrium
systems are non-equilibrium phase transitions described by phenomenological rate equations,
and the way the system relaxes to its steady state. Mean-field techniques, generally, do not give
correct results for low-dimensional systems, so people are motivated to study exactly-solvable
stochastic models in low dimensions. Moreover, solving one-dimensional systems should in
principle be easier. Exact results for some models on a one-dimensional lattice have been
obtained, for example in [1–13]. Different methods have been used to study these models,
including analytical and asymptotic methods, mean-field methods and large-scale numerical
methods.

Among the phenomenological models describing the relaxation of systems towards
equilibrium, one can name the Glauber model and the Kawasaki model [14–19]. The
combination of these two dynamics has been also considered [20–22].

In [23], an asymmetric generalization of the zero-temperature Glauber model on a lattice
with boundaries was introduced. It was shown there that in the thermodynamic limit the
system shows two kinds of phase transition. One of these is a static phase transition, the

0305-4470/01/377431+09$30.00 © 2001 IOP Publishing Ltd Printed in the UK 7431

http://stacks.iop.org/ja/34/7431


7432 A Aghamohammadi and M Khorrami

other a dynamic one. The static phase transition is controlled by the reaction rates, and is a
discontinuous change of the behaviour of the derivative of the stationary particle density at the
end points, with respect to the reaction rates. The dynamic phase transition is controlled by the
injection and extraction rates of the particles at the end points, and is a discontinuous change of
the relaxation time towards the stationary configuration. Other generalizations of the Glauber
model consist of, for example, alternating isotopic chains and alternating bound chains (see
e.g. [24]). People have also considered phase transitions induced through boundary conditions
(see, e.g. [25, 26]).

In [27], a ten-parameter family of reaction–diffusion reactions was introduced, for which
the evolution equation of n-point functions contains only n- or less than n-point functions.
What we do in this paper is to investigate these systems on a finite lattice with boundaries.
It will be shown that the stationary behaviour of the system is effectively controlled by two
parameters. On the one-dimensional boundary of this two-dimensional parameter space, there
exists a phase transition (in the thermodynamic limit, when the lattice becomes infinite), which
we call a static phase transition.

The relaxation time toward the stationary state of the system may depend on the injection
and extraction rates at each of the boundaries. It will be shown that in the thermodynamic limit
there are three regions: in one of them this time is independent of the injection and extraction
rates, in the second it depends on the injection and extraction rates at one end and in the third
it depends on the injection and extraction rates at the other end. This is called the dynamic
phase transition.

The scheme of the paper is as follows. In section 2, autonomous reaction–diffusion systems
with boundaries are introduced. In section 3, the static phase transition of these systems is
investigated. Finally, in section 4, the dynamic phase transition is studied.

2. Autonomous reaction–diffusion systems with boundaries

Consider a collection of particles drifting and reacting on a one-dimensional lattice with L
sites. Each site may be occupied, A, the state corresponding to which is denoted by |1〉, or
empty, ∅, the state of which is denoted by |0〉. The rate of change of the state |αβ〉 to the state
|γ δ〉 is Hγδ

αβ . It is shown in [27] that the evolution equations for n-point functions are closed
(involve only n- or less than n-point functions) iff the following conditions are satisfied byH :

−H 01
11 −H 00

11 +H 01
10 +H 00

10 −H 11
01 −H 10

01 +H 11
00 +H 10

00 =: 0
−H 10

11 −H 00
11 −H 11

10 −H 01
10 +H 10

01 +H 00
01 +H 11

00 +H 01
00 =: 0.

(1)

Defining

u := H 10
01 +H 00

01

v := H 01
10 +H 00

10

ū := H 10
11 +H 00

11

v̄ := H 01
11 +H 00

11

w := H 11
00 +H 10

00

s := H 11
00 +H 01

00

w̄ := H 11
01 +H 10

01

s̄ := H 11
10 +H 01

10

(2)
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one can write (1) as

u + s = ū + s̄

v + w = v̄ + w̄.
(3)

At the end sites 1 and L, there are also injection and extraction rates. The injection and
extraction rates at the first site are denoted by a and a′, respectively. The corresponding rates
at the last site are denoted by b and b′. It is then seen that

〈ṅk〉 = −(v + w + u + s)〈nk〉 + (v − v̄)〈nk+1〉 + (u− ū)〈nk−1〉 + w + s 1 < k < L

〈ṅ1〉 = −(v + w)〈n1〉 + (v − v̄)〈n2〉 + w + a(1 − 〈n1〉)− a′〈n1〉
〈ṅL〉 = −(u + s)〈nL〉 + (u− ū)〈nL−1〉 + s + b(1 − 〈nL〉)− b′〈nL〉

(4)

where 〈nk〉 is the probability that the kth site is occupied. Comparing this with [23], it is seen
that the model considered there is a special case of this model with ū = v̄ = w = s = 0.

3. The static phase transition of the system

The steady-state solution to (4) is

〈nk〉 = C +D1z
k
1 +D2z

k−L−1
2 (5)

where z1,2 satisfy

−(u + v + w + s) + (v − v̄)z1,2 + (u− ū)z−1
1,2 = 0 (6)

and z2 is the root whose absolute value is greater. Let us consider this equation more carefully.
Defining three new parameters p, q and r through

p := v − v̄

q := u− ū

r := u + s + v + w = u + s + v̄ + w̄ = ū + s̄ + v + w = ū + s̄ + v̄ + w̄

(7)

(where (3) has been used), equation (6) is rewritten as

p z2 − r z + q = 0. (8)

Using (7) and the fact that the rates are non-negative, it is seen that

r � |p|, |q|, |p + q|, |p − q|. (9)

The boundaries of the physical parameter space are thus

r = |p + q| and r = |p − q|. (10)

For r = p + q, it is seen that ū = v̄ = s = w = 0, which means that AA and ∅∅ do
not change. So, there are two equilibrium states on an infinite lattice without injection or
extraction; either all of the sites are occupied, or all of them are unoccupied. For p + q = −r ,
one has u = v = s̄ = w̄ = 0, which means that A∅ and ∅A do not change. So, there are
two equilibrium states on an infinite lattice without injection or extraction: · · ·A∅A∅ · · · and
· · · ∅A∅A · · ·.

For r = q−p, one has ū = v = s = w̄ = 0. The only nonzero rates are thenH 00
01 = H 11

10
and H 01

11 = H 10
00 . As all of the configurations can be converted to each other through the

reactions, the equilibrium state of the infinite lattice without injection or extraction is unique.
It is not difficult to see that for the special case where these four nonzero rates are equal, this
state is · · · ( 1

2 )(|0〉 + |1〉)⊗ ( 1
2 )(|0〉 + |1〉)⊗ · · ·. For r = p− q, one has u = v̄ = s̄ = w = 0.

The only nonzero terms are then H 00
10 = H 11

00 and H 10
11 = H 01

00 . This is the same as the case
r = q − p, with left and right sides interchanged.
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Also, if r = 0, then u = ū = v = v̄ = w = s = 0, so 〈ṅk〉 = 0, 1 < k < L. Neglecting
this trivial case, it is seen that r is positive and there are two parameters determining the
behaviour of the roots of (8):

P(z) := p′ z2 − z + q ′ = 0 (11)

where

p′ := p/r

q ′ := q/r.
(12)

Noting that P(1) < 0 and P(−1) > 0 for r > |p + q|, it is seen that both of the roots of (11)
are real: one of them is between 1 and −1; the other is out of this interval. So, |z1| < 1 < |z2|
for r > |p + q|. In the thermodynamic limit L → ∞,

〈nk〉 ≈ C +D1z
k
1 k � L

〈nk〉 ≈ C +D2z
k−L−1
2 L− k � L.

(13)

z1, z2, C, D1 and D2 are continuous functions of the rates. So the behaviour of 〈nk〉 near the
ends of the lattice varies continuously with rates, and there is no phase transition.

If r = p + q, one of the roots of (11) is unity; the other is q ′/p′ = q/p. If q > p, then
z1 = 1 and 〈nk〉 is flat for k � L. This is independent of p and q. However, if q < p, then
z2 = 1 and the slope of 〈nk〉 depends on the rates. For L− k � L, a reverse behaviour occurs.
If q < p, then z2 = 1 and 〈nk〉 is flat for L− k � L. If q > p, then z2 = q/p and 〈nk〉 varies
with k for L− k � L. To summarize, one defines two effective roots zl and zr for sites near
k = 1 (the left-hand end) and k = L (the right-hand end), respectively. We then have

zl =
{

1 q > p

q/p q < p
(14)

and

zr =
{
q/p q > p

1 q < p.
(15)

So there is a phase transition at p = q = r/2. This corresponds to u = v = s̄ = w̄.
If r = −p− q, one of the roots of (11) is −1 and the other is −q/p. The same behaviour

is repeated, that is

zl =
{

−1 −q > −p
−q/p −q < −p (16)

and

zr =
{

−q/p −q > −p
−1 −q < −p.

(17)

Again, there is a phase transition at p = q = −r/2. This corresponds to ū = v̄ = s = w.
It was seen that on two segments of the boundary of the physical parameter space there

exists a static phase transition. These segments (r = |p + q|) correspond to cases where the
equilibrium state on an infinite lattice without injection and extraction is not unique. On the
other segments of the boundary of the physical parameter space (r = |p − q|), where the
equilibrium state is unique on an infinite lattice without injection and extraction, there is no
static phase transition for the lattice with boundaries.
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4. The dynamic phase transition of the system

The homogeneous part of (4) can be written as

〈ṅk〉 = hlk〈nl〉. (18)

The eigenvalues and eigenvectors of the operator h satisfy

E xk = −(v + w + u + s)xk + (v − v̄)xk+1 + (u− ū)xk−1 k �= 1, L

E x1 = −(v + w + a + a′)x1 + (v − v̄)x2

E xL = −(u + s + b + b′)xL + (u− ū)xL−1

(19)

where the eigenvalue and the eigenvector have been denoted by E and x, respectively. The
solution to these is

xk = αzk1 + βzk2 (20)

where the zj ’s satisfy

E = −(v + w + u + s) + (v − v̄)z + (u− ū)z−1 (21)

and
(v − v̄)(αz2

1 + βz2
2)− (E + a + a′ + v + w)(αz1 + βz2) = 0

(u− ū)(αzL−1
1 + βzL−1

2 )− (E + b + b′ + u + s)(αzL1 + βzL2 ) = 0.
(22)

Defining

δa := a + a′ − (u + s)

δb := b + b′ − (v + w)
(23)

and using (21) to eliminate E, one arrives at

[(u− ū) + z1δa][(v − v̄)zL+1
2 + zL2 δb] − [(u− ū) + z2δa][(v − v̄)zL+1

1 + zL1 δb] = 0. (24)

This is the same as equation (15) in [23], with u and v replaced by u− ū and v− v̄, respectively.
The qualitative difference between (15) in [23] and (24) is thatu andv are non-negative, whereas
u− ū and v − v̄ may be negative. Defining

Zj := zj

√∣∣∣∣v − v̄

u− ū

∣∣∣∣
A := sgn(u− ū)

δa√|(v − v̄)(u− ū)|
B := sgn(v − v̄)

δb√|(v − v̄)(u− ū)|

(25)

equation (24) is simplified to

ZL+1
2 (1 + A Z1)(1 + B/Z2)− ZL+1

1 (1 + A Z2)(1 + B/Z1) = 0. (26)

Using (21), it is seen that

z1z2 = u− ū

v − v̄
(27)

or

Z1Z2 = sgn[(u− ū)(v − v̄)]. (28)

The eigenvalue E is also written as

E = −(v + w + u + s) +
√

|(u− ū)(v − v̄)|[Zsgn(v − v̄) + Z−1sgn(u− ū)]

= −(v + w + u + s) + sgn(v − v̄)
√

|(u− ū)(v − v̄)|(Z1 + Z2)

= −(v + w + u + s) + sgn(u− ū)
√

|(u− ū)(v − v̄)|(Z−1
1 + Z−1

2 ). (29)
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Let us have a closer look at (26). Using (28), (26) is converted to a polynomial equation for
Zj , having 2L+ 2 roots. For (u− ū)(v− v̄) > 0, Zj = 1 and Zj = −1 obviously satisfy (26).
For (u− ū)(v− v̄) < 0, Zj = i and Zj = −i are the trivial solutions of (26). However, these
solutions lead to

xk = zk(α + βk) (30)

not something like (20). And this form for xk generally does not satisfy the boundary conditions
at k = 1, L. So the other (nontrivial) 2L roots of (26) correspond to the eigenvalues of h.

First consider the case (u−ū)(v−v̄) > 0. If all of the roots ofZj are phases (unimodular),
then

E � −(v + w + u + s) + 2
√
(u− ū)(v − v̄). (31)

The equality holds if Zj = sgn(v − v̄) = sgn(u − ū). Normally, this is not a nontrivial root
of (26), but in the thermodynamic limit L → ∞ the nontrivial roots of (26) fill the whole unit
circle, so the relaxation time for this case is

τ =
[
u + v + w + s − 2

√
(u− ū)(v − v̄)

]−1
. (32)

It is seen that it does not depend on the injection and extraction rates. If, however, some of the
solutions of (26) are not phases, then the situation is different. Let Z1 = Z be a root of (26)
with |Z| > 1. In the thermodynamic limit L → ∞, (26) becomes(

1 +
A

Z

) (
1 +

B

Z

)
= 0 (33)

which has the solutions

Z = −A,−B. (34)

However, note that we were seeking solutions with moduli greater than one. This shows that
there is such a solution provided |A| > 1 or |B| > 1. If both hold, there exist two solutions
with moduli greater than one. Suppose |A| > 1. Putting Z1 = −A in (21), one arrives at

E = −(v + w + u + s)− sgn(u− ū)
√
(u− ū)(v − v̄)(A + A−1). (35)

If sgn(u− ū)A < 0, this value ofE violates (31), and the relaxation time is no longer obtained
from (32). In this case,

τ =
[
v + w + u + s + sgn(u− ū)

√
(u− ū)(v − v̄)(A + A−1)

]−1
(36)

which is greater than (32), and does depend on the injection and extraction rates. This is the
dynamic phase transition. The point at which this occurs is

δa = −
√
(u− ū)(v − v̄). (37)

In terms of the injection and extraction rates, the transition point is

a + a′ = u + s −
√
(u− ū)(v − v̄). (38)

A similar behaviour is seen at the transition point

b + b′ = v + w −
√
(u− ū)(v − v̄). (39)

If the injection and extraction rates are less than this, then we have

τ =
[
v + w + u + s + sgn(u− ū)

√
(u− ū)(v − v̄)(B + B−1)

]−1
. (40)

These sound quite similar to the results of [23], but there is a difference. In the models
studied in [23], either A could be less than −1 or B, and it was impossible that both could
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be less than one. The reason is that there s = w = ū = v̄ = 0, and this means that in the
physical region (where all of the rates are non-negative), either the left-hand side of (38) is
always greater than the right-hand side of (38), or the left-hand side of (39) is always greater
than the right-hand side of (39), since one of the right-hand sides is nonpositive. However,
this is not the case in the present model. Defining

A1 := u + s −
√
(u− ū)(v − v̄) = ū + s̄ −

√
(ū− u)(v̄ − v)

B1 := v + w −
√
(u− ū)(v − v̄) = v̄ + w̄ −

√
(ū− u)(v̄ − v)

(41)

it is seen that at least one of A1 or B1 are positive (apart from the special case u = v = s̄ = w̄

and ū = v̄ = s = w = 0, or vice versa, where both of them are zero), but it is also possible
that both of them are positive. In general, there may be three phases:

τ =




[v + w + a + a′ + (u− ū)(v − v̄)(a + a′ − u− s)−1]−1 region I

[u + s + b + b′ + (u− ū)(v − v̄)(b + b′ − v − w)−1]−1 region II[
v + w + u + s − 2

√
(u− ū)(v − v̄)

]−1
otherwise.

(42)

Regions I and II are defined as

a + a′ < A1 a + a′ − b − b′ < A1 − B1 for region I (43)

b + b′ < B1 a + a′ − b − b′ > A1 − B1 for region II. (44)

So the system may have two phases or three phases, depending on whether only one of A1 and
B1 are positive or both of them are positive. In the special case mentioned above, the system
has only one phase. This is the same Glauber model at zero temperature with diffusion as
studied in [23].

Next consider the case (u − ū)(v − v̄) < 0. If all of the solutions to (26) are phases,
then (29) shows that

�(E) = −(v + w + u + s) (45)

and from that,

τ = (v + w + u + s)−1. (46)

So in this case the relaxation time does not depend on the injection and extraction rates.
Moreover, the eigenvalues of h are complex, not real. This means that the relaxation of the
system toward its stationary state is oscillatory.

Now suppose that there exist solutions for (26) that are not phases. Let |Z1| > 1 > |Z2|.
At the thermodynamic limit, and using Z2 = −Z−1

1 , (26) becomes(
1 − A

Z1

) (
1 +

B

Z1

)
= 0. (47)

The solution to this is

Z1 = A,−B. (48)

It is obvious that to have non-phase roots, either |A| or |B| should be greater than unity.
Suppose |A| > 1. Corresponding to Z1 = A, one obtains

E = −(v + w + u + s)− 1

δa
[(δa)2 − |(u− ū)(v − v̄)|]. (49)

As |A| > 1, the expression in the bracket is positive. If δa < 0, then this value of E is greater
than the right-hand side of (45). So this value of E determines the relaxation time. That is,

τ = {v + w + u + s + (δa)−1[(δa)2 − |(u− ū)(v − v̄)|]}−1

= [v + w + a + a′ − |(u− ū)(v − v̄)|(a + a′ − u− s)−1]−1. (50)
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A similar argument shows that for δb < −√|(u− ū)(v − v̄)| the relaxation time is

τ = [u + s + b + b′ − |(u− ū)(v − v̄)|(b + b′ − w − v)−1]−1. (51)

Finally, if both |A| and |B| are greater than unity, then the larger of (50) and (51) is the
relaxation time. Defining A2 and B2 similarly to (41),

A2 := u + s −
√
(u− ū)(v̄ − v) = ū + s̄ −

√
(ū− u)(v − v̄)

B2 := v + w −
√
(ū− u)(v − v̄) = v̄ + w̄ −

√
(u− ū)(v̄ − v)

(52)

one arrives at

τ =



[v + w + a + a′ + (u− ū)(v − v̄)(a + a′ − u− s)−1]−1 region I
[u + s + b + b′ + (u− ū)(v − v̄)(b + b′ − v − w)−1]−1 region II
(v + w + u + s)−1 otherwise

(53)

where the definitions of the regions are the same as (43) and (44), with A1 and B1 replaced by
A2 and B2, respectively. Note that at least one of A2 and B2 is positive (apart from the special
case ū = v = s = w̄ and u = v̄ = s̄ = w = 0, or vice versa, where both of them are zero),
but it may be that both are positive. If only one of them is positive, the system has two phases.
If both are positive, it has three phases. In the special case mentioned above, the system has
only one phase.

One can combine (42) and (53) in a single relation. First, note that (41) and (52) can be
combined as

A := u + s −
√

|(u− ū)(v − v̄)| = ū + s̄ −
√

|(u− ū)(v − v̄)|
B := v + w −

√
|(u− ū)(v − v̄)| = v̄ + w̄ −

√
|(u− ū)(v − v̄)|. (54)

Then we can write

τ =




[v + w + a + a′ + (u− ū)(v − v̄)(a + a′ − u− s)−1]−1 region I

[u + s + b + b′ + (u− ū)(v − v̄)(b + b′ − v − w)−1]−1 region II{
v + w + u + s − 2�

[√
(u− ū)(v − v̄)

]}−1
otherwise

(55)

where the definitions of the regions are the same as (43) and (44), with A1 and B2 replaced
with A and B, respectively.
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[24] Gonçalves L L, Lopez de Haro M and Taguena-Martinez J 2000 Preprint cond-mat/0009457
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